SpyderByte.com ;Technical Portals 
      
 The #1 Site for News & Information Related to Linux High Performance Technical Computing, Linux High Availability and Linux Parallel Clustering
Home About News Archives Contribute News, Articles, Press Releases Mobile Edition Contact Advertising/Sponsorship Search Privacy
Research and Services
Cluster Quoter (HPC Cluster RFQ)
Hardware Vendors
Software Vendors
HPC Consultants
Training Vendors
News
Latest News
Newsletter
News Archives
Search Archives
Reference
Featured Articles
Cluster Builder
Beginners
Whitepapers
Documentation
Software
Lists/Newsgroups
Books
User Groups
Golden Eggs (Configuration Diagrams)
Linux HPC Links
Favorites:
Cluster Monkey (Doug Eadline, et al)
HPCWire (Tabor Communications)
insideHPC.com (John West)
Scalability.org (Dr. Joe Landman)

Beowulf.org
Beowulf Users Group
High Performance Computing Clusters
Thinking Parallel
Gelato.org
The Aggregate
Top500
Cluster Computing Info Centre
Coyote Gultch
Robert Brown's Beowulf Page
FM.net: Scientific/Engineering
SuperComputingOnline
HPC User Forum
GridsWatch
Linux HPC News Update
Stay current on Linux related HPC news, events and information.
LinuxHPC Newsletter

Other Mailing Lists:
Linux High Availability
Beowulf Mailing List
Gelato.org (Linux Itanium)

LinuxHPC.org
Home
About
Contact
Mobile Edition
Sponsorship

Linux Cluster RFQ Form
Reach Multiple Vendors With One Linux Cluster RFQ Form. Save time and effort, let LinuxHPC.org do all the leg work for you free of charge. Request A Quote...

Latest News

Cray Will Leverage an "Adaptive Supercomputing" Strategy
Posted by Kenneth Farmer, Monday March 20 2006 @ 10:42PM EST

One Supercomputer Architecture Will Integrate Multiple Processing Technologies

Cray Inc. today announced plans to develop supercomputers that will take the concept of heterogeneous computing to an entirely new level by integrating a range of processing technologies in a single platform. These "adaptive supercomputing" systems will be able to solve scientific and engineering problems more quickly -- and make programmers and end users more productive -- by adapting processing to the requirements of each application.

Over the next few years, Cray supercomputers will combine standard microprocessors (scalar processing), vector processing, multithreading and hardware accelerators in one high-performance computing (HPC) platform that uses the industry-standard Linux operating system. Powerful compilers and other software will automatically match an application to the processor blade that is best suited for it.

The adaptive supercomputing approach means that users will not have to bias their HPC platform decisions toward the most widely used applications. It also means users will not have to make costly and time-consuming programming alterations so their applications will run efficiently on a particular platform. Cray enjoys a head start in adaptive supercomputing because the company's depth of expertise and intellectual property encompasses the various processing types and their related compilers.

"With adaptive supercomputing, Cray is once again providing the HPC market with new, innovative approaches," said Dr. Earl Joseph, research vice president of high-performance systems at IDC. "By targeting HPC systems with a broad range of processor choices and innovative software, Cray is poised to reverse the current practice of altering applications to fit platforms. Recent IDC end-user surveys show that HPC users place a high value on innovative approaches that enable broad usability, especially those that have the possibility of taking computing to a new level, or make large-scale systems easier to use."

"Cray's adaptive supercomputing plans are genuinely exciting," said Robert Harrison, an Oak Ridge National Laboratory researcher and winner of the IEEE Computer Society's Sidney Fernbach Award. "Computational chemistry cuts across many disciplines, from materials science to biology and environmental science. A single computing resource that can solve multidisciplinary and multiscale problems, while also achieving high levels of performance and scalability, will be extremely valuable in our field. It will make it easier to develop and deploy new science, because we will be able to focus more on the science and worry less about the computers."

Future Importance for HPC

There are two fundamental reasons why adaptive supercomputing will be important to the future of HPC. First, applications in areas ranging from aircraft design to climate modeling have become much more complex. In fact, many are really collections of separate sub-applications with varied characteristics and processing requirements.

Second, recent advancements in multicore microprocessors that have resulted in more tightly coupled processing have boosted performance, but still provide just one type of processing. Furthermore, multicore processors create additional challenges in scalable systems due to limitations in bandwidth, memory access and software scalability.

"Different applications run best on different types of processors, but high-performance computers typically offer only one type of processor," said Cray Chief Technology Officer Steve Scott. "Even today's heterogeneous computing environments really just loosely link differently architected computers, rather than offering true processing heterogeneity and adaptability. Cray will build supercomputers that can adapt to the applications, instead of forcing the applications to adapt to the supercomputers. Over time, these systems will include intelligence that can examine an application, determine which processing technique will work best with it and then handle the application accordingly -- without user intervention."

Adaptive Supercomputing Roadmap

Cray will implement adaptive supercomputing in phases. The first phase, code-named "Rainier," will create an integrated user environment across all of Cray's platforms. The second phase will result in a fully integrated multiarchitecture system, and the final phase will see the development of Cray systems that incorporate dynamic resource allocation using software that automates adaptive supercomputing.

The foundation for Cray's adaptive supercomputers will be a scalable infrastructure that employs the company's long-standing approach to high bandwidth and low latency. Processing technologies will leverage Cray's portfolio of expertise in vector and multithreading, as well as the AMD Opteron(TM) scalar processor technology that is currently part of the industry-leading Cray XT3(TM) and Cray XD1(TM) systems.

In November 2005, Cray and AMD announced an agreement that extended their successful relationship through the end of the decade. The two firms are also actively collaborating on Cray's Phase 3 proposal for the Defense Advanced Research Projects Agency (DARPA) High Productivity Computing Systems program, which has challenged HPC vendors to develop a new generation of supercomputers that can perform quadrillions of operations per second.

http://www.cray.com


< Leading Itanium Processor Architects to Keynote Gelato Conference | Leading Itanium Processor Architects to Keynote Gelato Conference >

 


Supercomputing '07
Nov 10-16, Reno, NV


Register now...

Sponsors








Affiliates



Cluster Monkey




Golden Eggs
(HP Visual Diagram and Config Guides)
Clusters:
CP4000 32x DL145G2 GigE Opteron, Dual Core
CP4000 64x DL145 GigE Opteron
CP4000 102x DL145 GigE Opteron
CP4000 32x DL145 Myri Opteron
Rocks Cluster 16-22 DL145 Opteron
Rocks Cluster 30-46 DL145 Opteron
Rocks Cluster 64-84 DL145 Opteron
LC3000 GigaE 24-36 DL145 Opteron
LC3000 Myri 16-32x DL145 Opteron
LC3000 GigaE 16-22x DL145 Opteron
LC2000 GigaE 16-22x DL360G3 Xeon
ProLiant:
> DL365 System 2600Mhz 2P 1U Opteron Dual Core
DL360 G5 System 3000Mhz 2P 1U EM64T Dual/Quad Core
DL385 G2 2600Mhz 2P Opteron Dual Core
DL380 G5 3000Mhz 2P EM64T Dual/Quad Core
DL140 3060MHz 2P IA32
DL140 G2 3600MHz 2P EM64T
DL145 2600MHz 2P Opteron
DL145 G2 2600MHz 2P Opteron Dual Core
DL360 G4 3400MHz 2P EM64T
DL360 G4p 3800MHz 2P EM64T
DL380 G4 3800MHz 2P EM64T
DL385 2800MHz 2P Opteron Dual Core
DL560 3000MHz 4P IA32
DL580 G3 3330MHz 4P EM64T
DL585 2800MHz 4P Opteron Dual Core
Integrity:
Montecito 2P-16P, rx2660-rx8640 (multi-system diagram)
rx2660 1600MHz 2P 2U Montecito Systems and Cluster
rx6600 1600MHz 4P 7U Single & Cluster
rx3600 1600MHz 2P 4U Single & Cluster
rx2620 1600MHz 2P 2U Single & Cluster
Superdome 64P base configuration
Integrity Family Portrait (rx1620 thru rx8620), IA64
rx1620 1600MHz 2P MSA1000 Cluster IA64
rx2620 1600MHz 2P MSA1000 Cluster IA64
rx4640 1600MHz 4P MSA1000 Cluster IA64
rx7620 1600MHz 8P 10U Systems and MSA1000 Cluster
rx8620 1600MHz 16P 17U Systems and MSA1000 Cluster
Storage:
MSA30-MI Dual SCSI Cluster, rx3600, rx6600 and rx2660
MSA30-MI Dual SCSI Cluster, rx1620...rx4640
MSA500 G2, SCSI
MSA1510i IP SAN 48TB, SCSI and SATA
MSA1500 48TB, SCSI and SATA
Misc:
Dual Core AMD64 and EM64T systems with MSA1500






Appro: Enterprise and High Performance Computing Whitepapers
Is Your HPC Cluster Ready for Multi-core Processors?:
Multi-core processors bring new challenges and opportunities for the HPC cluster. Get a first look at utilizing these processors and strategies for better performance.

Accelerating Results through Innovation:
Achieve maximum compute power and efficiency with Appro Cluster Solutions. Our highly scalable clusters are designed to seamlessly integrate with existing high performance, scientific, technical, and commercial computing environments.
Keeping Your Cool in the Data Center:
Rethinking IT architecture and infrastructure is not a simple job. This whitepaper helps IT managers overcome challenges with thermal, power, and system management.

Unlocking the Value of IT with Appro HyperBlade:
A fully integrated cluster combining advantages of blade and rack-mount servers for a flexible, modular, scalable architecture designed for Enterprise and HPC applications.
AMD Opteron-based products | Intel Xeon-based products


Hewlett-Packard: Linux High Performance Computing Whitepapers
Unified Cluster Portfolio:
A comprehensive, modular package of tested and pre-configured hardware, software and services for scalable computation, data management and visualization.

Your Fast Track to Cluster Deployment:
Designed to enable faster ordering and configuration, shorter delivery times and increased savings. Customers can select from a menu of popular cluster components, which are then factory assembled into pre-defined configurations with optional software installation.
Message Passing Interface library (HP-MPI):
A high performance and production quality implementation of the Message-Passing Interface (MPI) standard for HP servers and workstations.

Cluster Platform Express:
Cluster Platform Express comes straight to you, factory assembled and available with pre-installed software for cluster management, and ready for deployment.
AMD Opteron-based ProLiant nodes | Intel Xeon-based ProLiant nodes



Home About News Archives Contribute News, Articles, Press Releases Mobile Edition Contact Advertising/Sponsorship Search Privacy
     Copyright © 2001-2007 LinuxHPC.org
Linux is a trademark of Linus Torvalds
All other trademarks are those of their owners.
    
  SpyderByte.com ;Technical Portals